Synthesis of a cis-conformationally restricted peptide bond isostere and its application to the inhibition of the H IV-1 protease

A ndrew D. A bell* and G lenn J. F oulds
Department of Chemistry, University of Canterbury, Christchurch, New Z ealand

A synthesis of a new, tetrazole-based, cis-constrained hydroxyethylamine peptide bond isostere is reported. This has been used to produce a new class of H IV-1 protease inhibitor.

Introduction

A common strategy used in drug design is to transform specific structural information contained in biologically active peptides into small, non-peptide ligands, referred to as peptidomimetics. ${ }^{1}$ Such compounds often possess more favourable pharmacological properties while maintaining the potency and selectivity of the parent peptide. The isosteric replacement of a peptide bond, and other structural units in a peptide back bone, represents a very important and general example of the use of peptidomimetics. ${ }^{1,2}$ Examples of peptide bond (-CONH-) isosteres include hydroxyethylamine $1 \mathrm{a}\left(-\mathrm{CHOH}-\mathrm{CH}_{2} \mathrm{NH}-\right)$

1 a

2

4
hydroxymethylene ($-\mathrm{CHOH}-$), hydroxyethylene (-CHOH -$\mathrm{CH}_{2}-$), dihydroxyethylene ($-\mathrm{CHOH}-\mathrm{CHOH}-$) and others. ${ }^{2}$ These general peptide bond replacements have been incorporated into oligopeptides ${ }^{2}$ to give specific inhibitors of proteolytic enzymes, ${ }^{3-4}$ e.g. JG365 2^{3} is a potent, hydroxyethylaminebased inhibitor of the HIV protease. Here, the core isostere of the inhibitor functions as a non-hydrolysable mimic of the tetrahedral transition state which would result from enzyme catalysed cleavage of a substrate peptide bond.

A nother important tool in the design of peptidomimetics is to incorporate conformationally restricted units, such as
rings, ${ }^{1,5}$ into a peptide sequence to force a ligand to adopt a known, biologically active conformation, e.g. peptidomimetics of the type 3^{6} have been shown to be potent and biostable inhibitors of the HIV-1 protease. A number of examples also exist in the literature whereby a peptide bond has been incorporated into an aromatic ring (e.g. a tetrazole ${ }^{7}$ or a pyrrole as in $\mathbf{4}^{8}$) such that it is forced to adopt a so called cis geometry. ${ }^{1}$

In this paper we present our initial work on the design and synthesis of the first reported example of a 'cis' conformationally restricted isostere, which represents a combination of both the aforementioned strategies in the design of peptidomimetics, i.e. isosteric replacement and conformational restriction. In these peptidomimetics, e.g. 20, 21 and 34, 35, a tetrazole has been incorporated into positions 3 and 4 of a hydroxyethylamine isostere (see structure 1a) such that it is forced to adopt a 'cis' geometry (see structure 1b). Our initial results on the application of this isostere to the development of a new class of inhibitor of the HIV-1 protease are also presented. This work is part of our ongoing programme to produce a library of peptidomimetic core-structures possessing well defined conformations and reactivity. ${ }^{8,9}$

Results and discussion

Two main series of compounds, based on the parent hydroxyethylamine isostere 1, were targeted for synthesis, one without a hydroxy group at C2 (Scheme 2) and one with a hydroxy group at C2 (Schemes 3 and 5). The first series provided control compounds for biological testing and the assignment of stereoisomers (vide infra).
N-Cbz- β-phenylalanine 6 was conveniently prepared by silver(I) oxide treatment of the α-diazo ketone derived from N -Cbz-phenylalanine (Scheme 1). ${ }^{10}$ The sequence outlined in Scheme 2 began with a dicyclohexylcarbodiimide (DCC) and hydroxybenzotriazole (HOBT) catalysed coupling of $\mathrm{N}-\mathrm{Cbz}-\beta$ phenylalanine 6 with L-alanine benzyl ester to give the dipeptide analogue 15. Treatment of $\mathbf{1 5}$ with phosphorus pentachloride and hydrazoic acid ${ }^{7}$ gave the N - and C -protected tetrazole analogue 16 as a single isomer. Compound $\mathbf{1 6}$ was N -deprotected with 95% hydrobromic acid in acetic acid to give the hydrobromide $\mathbf{1 7}$ which was coupled with N -(2-quinolinylcarbonyl) (QC) protected l-asparagine, in the presence of benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP), to give the tripeptidomimetic 18. Hydrogenolysis then gavethefree acid 19, which yielded a 1:1 mixture of the peptidomimetics 20 and 21 on BOP catalysed coupling with an excess of tert-butylamine. Compounds 20 and 21, which resulted from epimerisation of the alanine-derived residue during the final coupling step, were separable by reversed-phase HPLC [C ${ }_{18}$ column eluting with methanol-water ($55: 45$), containing 0.1% trifluoroacetic acid].

The key starting materials for the second series, compounds

Scheme 1 Reagents and conditions: $\mathrm{i}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}, \mathrm{ClCO}_{2} \mathrm{Et}$ then $\mathrm{CH}_{2} \mathrm{~N}_{2} ; \mathrm{Ag}_{2} \mathrm{O}$; ii, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeONHMe} \cdot \mathrm{HCl}, \mathrm{BOP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $3,5-$ dimethylpyrazole, $\mathrm{DCC}^{2}, \mathrm{CHCl}_{3}$; $\mathrm{LiAlH}_{4}, \mathrm{THF}$; iii, $\mathrm{KCN}, \mathrm{EtAc}, \mathrm{H}_{2} \mathrm{O}$; $\mathrm{HCl} ; \mathrm{iv}, \mathrm{NaOH} ; \mathrm{v}, \mathrm{Ac}_{2} \mathrm{O}$, pyridine

11 and $\mathbf{1 2}$, were readily prepared ${ }^{11,12}$ from N -Cbz-phenylalanine 5 (Scheme 1). A BOP catalysed coupling of 5 with N,0dimethylhydroxylamine, followed by lithium aluminium hydride reduction gave the aldehyde $\mathbf{7}$ and variable amounts of the over reduced alcohol 8 . Compound 8 was re-oxidized to 7 , using Dess-M artin periodinane. ${ }^{13}$ Reaction of 7 with potassium cyanide, followed by methanolysis of the resulting cyanohydrins, gave 9 and $10 .{ }^{12} \mathrm{H}$ ydrolysis of the methyl esters, 9 and 10, with sodium hydroxide gave 11 and 12. A cetylation of 11 and $\mathbf{1 2}$ gave the corresponding acetates $\mathbf{1 3}$ and 14 , respectively.

A BOP catalysed coupling of $\mathbf{1 3}$ with l-alanine benzyl ester gave the dipeptide analogue 22 (Scheme 3), which was treated with phosphorus pentachloride and hydrazoic acid, in the presence of quinoline, to give a mixture of the N - and C protected tetrazolebased peptidomimetics 23 and 24 (1:4 by ${ }^{1} \mathrm{H}$ N M R spectroscopy). A sample of $\mathbf{2 4}$ was purified from the mixture by crystallisation from ethyl acetate and light petroleum. A similar sequence starting with the C2 epimer of 13 compound $\mathbf{1 4}$, gave a 17:3 mixture of $\mathbf{2 3}$ and $\mathbf{2 4}$, from which a sample of $\mathbf{2 3}$ was obtained by chromatography. The addition of quinoline ${ }^{7}$ in the tetrazole formation step was found to mimimise epimerisation at C2 of the peptidomimetics. The intermediate imidoyl chloride, produced on reaction of the dipeptide 22 or $\mathbf{2 5}$ with PCl_{5} (Scheme 4), is readily protonated on nitrogen such that it is very susceptible to epimerisation at C2 unless a suitable base, e.g. quinoline, is present. A n attempted conversion of the hydroxy dipeptides $\mathbf{4 0}$, rather than the acetates $\mathbf{2 2}$, 25, into the corresponding tetrazoles proved unsuccessful (Scheme 5). Compounds 40 were obtained by BOP catalysed coupling of a mixture of $\mathbf{1 1}$ and $\mathbf{1 2}$ with L-alanine benzyl ester.

A $2: 3$ mixture of $\mathbf{2 3}$ and $\mathbf{2 4}$ was N -deprotected ($95 \% \mathrm{HBr}$ in acetic acid) to give the corresponding amine salts 26 and 27 (2:3) (Scheme 5). These were coupled with N-QC-l-asparagine, to give 28 and 29 (2:3) which were C-deprotected ($\mathrm{H}_{2}, 10 \%$ PdC) to give 30 and 31 . A BOP catalysed coupling of this mixture with an excess of tert-butylamine gave 32, 33, 36 and 37 in a ratio of $1.5: 1.5: 1.2: 1$. Finally, hydrolysis with potassium carbonate in methanol and water gave a HPLC separable [C_{18} column eluting with methanol-water ($60: 40$, containing 0.1%

$16 \mathrm{R}=\mathrm{Cbz}$, iii $17 \mathrm{R}=\mathrm{BrH}_{2} \leftarrow 84 \%$

Scheme 2 Reagents and conditions: i, l-Ala-OBn $\cdot \mathrm{HCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{HOBT}$, DCC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii, $\mathrm{PCl}_{5}, \mathrm{HN}_{3}$, benzene, room temp.; iii, $95 \% \mathrm{HBr}$, AcOH ; iv, QC-L-A sn, BOP, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, D M F, room temp.; v, H_{2}, $10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{AcOH}, \mathrm{EtOH}$; vi, $\mathrm{Bu}^{\mathrm{t}} \mathrm{NH}_{2}, \mathrm{BOP}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{DMF}$, room temp.

Scheme 3 Reagents and conditions: i, l-Ala-OBn•HCI, BOP, Et ${ }_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp.; ii, $\mathrm{PCl}_{5}, \mathrm{HN}_{3}$, quinoline, CHCl_{3}, room temp.
trifluoroacetic acid)] mixture of $\mathbf{3 4}, \mathbf{3 5}, 38$ and 39 in a ratio of 2.8:2.8:1.3:1. The conversion of $\mathbf{3 0}, \mathbf{3 1}$ to give 32, 33,36 and 37 resulted in epimerisation at C5 \{[(5R)-isomers; 32, 36]:(5S)isomers; 33,37] $=2.5: 2.7\}$, as was also the case in the preparation of 20, 21 from 19 (Scheme 2).

The C2 and C5 configurations of the tetrazole-based pepti-

Scheme 5 Reagents and conditions: i, $95 \% \mathrm{HBr}, \mathrm{AcOH}$; ii, QC-L-A sn BOP, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, DM F, room temp.; iii, $\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{AcOH}$, EtOH ; iv, $\mathrm{Bu}^{\mathrm{t}} \mathrm{NH}_{2}, \mathrm{BOP}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DM}$ F, room temp.; v, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}-$ $\mathrm{H}_{2} \mathrm{O}$; vi. ц-Ala-OBn•HCl, BOP, $\mathrm{Et}_{3} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp.; vii, PCl_{5}, HN_{3}, quinoline, CHCl_{3}, room temp.
domimetics were assigned on the basis of ${ }^{1} \mathrm{H}$ NMR spectroscopy. Compounds 20 and 21 provided references for the assignment of the C5 configuration. The C5-methyl resonance of the (5 S)-derivatives is downfield [$\delta_{\mathrm{H}} 1.88$ (16), 1.89 (17), 1.88 (18), 1.91 (19) and 1.92 (21)] relative to a (5R)-configuration [δ_{H} 1.74 (20)]. The (5S)-configuration corresponds to that of the starting l-alanine benzyl ester (Scheme 2). The isomeric pairs 23, 24 and 26, 27 were also assigned a (5S)-configuration on this basis (Table 1) such that, as would be expected, the original alanine configuration is still intact in these compounds. That $\mathbf{2 3}$

Table $1{ }^{1} \mathrm{H}$ N M R spectral data

Compound	${ }^{1} \mathrm{H}$ Chemical shift (ppm) ${ }^{\text {a }}$				Configuration ${ }^{\text {a }}$	
	H 1	H2	H5	Me	C2	C5
23	4.58	6.09	5.17	1.84	S	S
24	4.42	5.92	5.36	1.93	R	S
26	4.30	6.28	5.65	1.89	S	S
27	4.08	5.89	5.71	1.93	R	S
34	4.58	5.00	5.49	1.79	R	R
35	4.62	5.09	5.55	1.95	R	S
38	4.61	5.04	5.42	1.80	S	R
39	4.65	5.12	5.52	1.93	S	S
43	4.29	5.10	5.69	1.88	S	S
44	4.25	5.09	5.63	1.92	R	S
45				1.98		S

${ }^{a} \mathrm{~N}$ on-systematic substituent numbering, see Scheme 5.
and 24, and hence $\mathbf{2 6}$ and $\mathbf{2 7}$, differ in configuration at C2, was established by the preparation of 45 (Scheme 6). To this end,

Scheme 6 Reagents and conditions: i, $\mathrm{KOH}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$; ii, DessM artin periodinane
hydrolysis of the acetates from a mixture of $\mathbf{2 3}$ and $\mathbf{2 4}$, followed by oxidation of the resulting C 2 secondary alcohols with D essM artin periodinane, ${ }^{13}$ gave a single product, 45. The C5-M e resonance of 45 was observed at $\delta 1.98$, a value consistent with a (5S)-configuration. This configuration corresponds to that of the L-alanine benzyl ester used in its synthesis. Compounds 23 and $\mathbf{2 4}$ must, therefore, have the same (5 S)-configuration as the starting l-alanine benzyl ester. Compounds 23 and 24 were obtained as the major products from reactions of 13 and 14, respectively (Scheme 3). The starting materials $\mathbf{1 3}$ and $\mathbf{1 4}$ have defined configurations at C2.

The configurations of the final products from the sequence of reactions outlined in Schemes 3 and 5 were also assigned. The (5R)-isomers, 34 and $\mathbf{3 8}$, were readily identified on the basis of the upfield $\mathrm{C} 5-\mathrm{M}$ e resonances ($\delta 1.79$ and 1.80 , respectively). The corresponding resonances for the (5S)-isomers, 35 and 39 occurred at $\delta 1.95$ and 1.93 , respectively (Table 1). The C2configurations of all the derivatives were also assigned on the basis of trends in the ${ }^{1} \mathrm{H}$ NMR data. In particular, the H 1 and H 2 resonances were downfield, and the H 5 resonances upfield for a (2S)-configuration relative to a (2R)-configuration (Table 1). TheC 5-M e resonance is also, typically, downfield for a (2R)relative to a (2S)-configuration.
The work presented in this paper was not only prompted by our continuing goal to produce a library of peptidomimetic core-structure possessing well defined conformations and reactivity ${ }^{8,9}$ but also by a reported crystal structure of JG 365 2 (a potent inhibitor of the HIV-protease) ${ }^{3}$ bound to the protease. ${ }^{3}$ In this structure, the torsion angle, designated by τ in $\mathbf{2}$, is close to zero (referred to here as a cis-like geometry). We reasoned that the tetrazole ring in peptidomimetics of the type

Table 2 HIV-1 protease inhibition data

	Compound
$I C_{50} / \mu \mathrm{M}$	
$\mathbf{2 0}$	$300(\pm 10)$
$\mathbf{2 1}$	$170(\pm 20)$
$\mathbf{3 4}$	$51(\pm 3)$
$\mathbf{3 5}$	$60(\pm 10)$

20, 21 (Scheme 2) and 34, 35 (Scheme 5), would force the hydroxyethylamine isostere core into the enzyme-bound, bioactive, conformation of J G 365 (see structure 1b). The IC ${ }_{50}$ values (Table 2) were determined for compounds 20, 21, and the major isomers 34 and 35 (both have the same C2 configuration as JG 365 2) using HIV-1 protease as described elsewhere ${ }^{14}$ The QC-asparagine and tert-butyl amide groups of the peptidomimetics were chosen based on published studies on the inhibition of the H IV-1 protease by analogues of J G 365, e.g. 46. ${ }^{3,15}$
A lthough the compounds tested in the current study are all considerably less potent than JG365 2, some preliminary structure/activity trends are evident. Firstly, it is clear that the C2 hydroxy group of the cis-conformationally restricted hydroxyethylamine isostere gives compounds with increased potency (compare compounds 20, 21 with 34, 35, Table 2). It would also appear that there is little difference between a (5S)and a (5R)-configuration with regards to inhibitory potency (compare 34 and 35, Table 2).

It must be noted that the tetrazole-based peptidomimetics presented in this paper lack the extended binding sequence of amino acids ($\mathrm{P}_{4}-\mathrm{P}_{3}{ }^{\prime}$) ${ }^{3,16}$ of J G 365 2, which is known to favour binding in the 'cis' geometry. The mode of binding of the inhibitors, 2 and $\mathbf{4 6}$, to the HIV-1 protease are quite distinct. The central hydroxyethylamine core ($\mathrm{P}_{1}-\mathrm{P}_{1}$) of 2 adopts the 'cis' geometry upon which the current study is based (see structure $\mathbf{1 b}$ and earlier for a discussion) while the equivalent backbone of 46 is thought to adopt an alternative 'trans' arrange-

46
ment. ${ }^{2,3,15}$ The 'cis' geometry is favoured when the inhibitor peptide sequence is extended to include $\mathrm{P}_{2}{ }^{\prime}$ and $\mathrm{P}_{3}{ }^{\prime}$ residues (Ile and Val, respectively, in 2). ${ }^{2,3,15}$ The tert-butyl amide of 46 is thought to occupy the $\mathrm{S}_{2}{ }^{\prime}$ enzyme subsite forcing it into the alternative 'trans' arrangement. W ith this in mind, the peptide sequence of $\mathbf{3 4}$ is currently being extended in the C-direction. In addition, alternative amino acids to alanine, at the $\mathrm{P}_{1}{ }^{\prime}$ position, are being investigated. A large enzyme pocket is available for binding the $\mathrm{P}_{1}{ }^{\prime}$ residue These and other studies are in progress to optimise the potency of the cis-conformationally constrained tetrazoles towards the HIV-1 protease and to further develop them as general peptide bond isosteres.

Experimental

G eneral

M elting points were obtained using a H ot Stage M icroscope and are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ N M R spectra were recorded on a Varian U nity 300 spectrometer and a Varian XL - 300 spectrometer, respectively, in CDCl_{3} unless otherwise specified. Infrared spectra were obtained using a Perkin Elmer 1600 FTIR Spectrophotometer. M ass spectra were obtained on a K ratos M S80R FA magnetic sector double focusing mass spectrometer. Optical rotations were measured on a JASCO J-20C
recording spectropolarimeter, and $[a]_{\mathrm{D}}$ values are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. F lash chromatography was carried out on silica gel 60 (mesh 63-200 $\mu \mathrm{m}$). Preparative chromatography was carried out using a Chromatotron (H arrison R esearch Inc.) using glass plates coated with M erck type $60 \mathrm{PF}_{254}$ silica gel. Light petroleum refers to the fraction of $\mathrm{bp} 60-70{ }^{\circ} \mathrm{C}$ and ether refers to diethyl ether. HIV-1 protease inhibition assays were carried out as described. ${ }^{14}$

N -B enzyloxycarbonyl-L-phenylalaninal 7

To a stirred solution of Dess-M artin periodinane ${ }^{13}$ (774 mg , 1.8 mmol) in dichloromethane ($5 \mathrm{~cm}^{3}$) was added a solution of the alcohol $8(476 \mathrm{mg}, 1.7 \mathrm{mmol})$, obtained from literature ${ }^{11}$ preparations of 7 , in dichloromethane ($5 \mathrm{~cm}^{3}$) and the mixture was stirred at room temp. for 1 h . Ether ($25 \mathrm{~cm}^{3}$) and a solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~g}, 8 \mathrm{mmol})$ in saturated aqueous NaHCO_{3} $\left(20 \mathrm{~cm}^{3}\right)$ were added and the mixture was stirred at room temp. for 15 min . The organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}\left(5 \mathrm{~cm}^{3}\right)$, water ($5 \mathrm{~cm}^{3}$) and saturated aqueous $\mathrm{NaCl}\left(5 \mathrm{~cm}^{3}\right)$, dried and evaporated to give the aldehyde 7^{11} (468 mg, 98\%).

G eneral procedures

M ethod A: coupling. To a $0^{\circ} \mathrm{C}$ solution of the carboxylic acid in dichloromethane ($5 \mathrm{~cm}^{3} \mathrm{mmol}^{-1}$) was added triethylamine (1 equiv.), 1-hydroxybenzotriazole (HOBT) (1 equiv.) and the amine (1 equiv.; alternatively, 1 equiv. of the amine $\cdot \mathrm{HCl}$ or HBr salt and an extra 1 equiv. of triethylamine), and the mixture was stirred for 10 min . DCC (1 equiv.) was added, stirring was continued at $0^{\circ} \mathrm{C}$ for a further 10 min and the solution was then left to warm to room temp. over 18 h . The mixture was filtered and evaporated under reduced pressure. The residue was redissolved in ethyl acetate ($5 \mathrm{~cm}^{3}$), washed with aqueous $2 \mathrm{~m} \mathrm{HCl}\left(2.5 \mathrm{~cm}^{3}\right)$, aqueous $10 \% \mathrm{NaHCO}_{3}\left(2.5 \mathrm{~cm}^{3}\right)$ and water ($2.5 \mathrm{~cm}^{3}$), dried and evaporated. The crude product was purified by flash chromatography or recrystallisation.
M ethod B: coupling. Triethylamine (2 equiv.) was added to a solution of the carboxylic acid, amine (1 equiv.; alternatively, 1 equiv. of the amine $\cdot \mathrm{HCl}$ or HBr salt and an extra 1 equiv. of triethylamine) and BOP (1.1 equiv.) in dichloromethane or DM F and the mixture was stirred at room temp. for 1 h . A further portion of triethylamine (1 equiv.) was added and stirring was continued at room temp. for 18 h . Saturated aqueous $\mathrm{NaCl}\left(3 \mathrm{~cm}^{3}\right)$ was added and the mixture was extracted with ethyl acetate ($3 \times 5 \mathrm{~cm}^{3}$). The organic phase was washed with aqueous $2 \mathrm{~m} \mathrm{HCl}\left(2.5 \mathrm{~cm}^{3}\right)$, aqueous $1 \mathrm{~m} \mathrm{NHCO}\left(3 \times 2.5 \mathrm{~cm}^{3}\right)$ and water ($2.5 \mathrm{~cm}^{3}$), dried and evaporated. The product was purified by flash chromatography.
M ethod C : tetrazole formation. To a stirred suspension of the amide (1 equiv.) in dry benzene ($5 \mathrm{~cm}^{3} \mathrm{mmol}^{-1}$) was added crystalline PCl_{5} (1 equiv.). A transparent solution formed and the mixture was stirred at room temp. for 45 min . An extra portion of PCl_{5} (0.2 equiv.) was added and stirring was continued for a further 45 min . A benzene ($3 \mathrm{~cm}^{3}$) solution of hydrazoic acid (10 equiv.) was added and the mixture was stirred at room temp. for 2 d . The mixture was diluted with benzene ($5 \mathrm{~cm}^{3}$) and the organic phase was washed with aqueous $\left.1 \mathrm{~m} \mathrm{NaHCO} 3 \times 2.5 \mathrm{~cm}^{3}\right)$, water ($2.5 \mathrm{~cm}^{3}$) and saturated aqueous $\mathrm{NaCl}\left(2.5 \mathrm{~cm}^{3}\right)$. The organic phase was dried and evaporated to give a mixture of the tetrazole and the unreacted starting material which were separated by flash silica chromatography.

M ethod D: tetrazole formation. Quinoline (2.4 equiv.) was added to a stirred solution of PCl_{5} (1.2 equiv.) in dry chloroform ($5 \mathrm{~cm}^{3} \mathrm{mmol}^{-1}$) at room temp. to give a white precipitate. A fter stirring for 30 min , a solution of the amide (1 equiv.) in chloroform ($5 \mathrm{~cm}^{3} \mathrm{mmol}^{-1}$) was added slowly, keeping the temperature below $20^{\circ} \mathrm{C}$. A further portion of PCI_{5} (0.2 equiv.) was added after 1 h and stirring was continued for 2.5 h . A benzene $\left(3 \mathrm{~cm}^{3}\right)$ solution of hydrazoic acid (30 equiv.) was added and the
mixture was stirred at room temp. for 2 d . The mixture was evaporated, redissolved in ethyl acetate ($10 \mathrm{~cm}^{3}$) and washed successively with aqueous $2 \mathrm{~m} \mathrm{HCl}\left(2 \times 2.5 \mathrm{~cm}^{3}\right)$, water $(2 \times 2.5$ cm^{3}) and saturated aqueous $\mathrm{NaCl}\left(2.5 \mathrm{~cm}^{3}\right)$. The solution was dried and evaporated to give a crude mixture of the tetrazole and the unreacted amide which was purified by flash silica chromatography.
M ethod E : removal of the $\mathbf{C b z}$ protecting group. To a stirred solution of the protected amine (1 equiv.) in acetic acid ($1 \mathrm{~cm}^{3}$) was added $50 \% \mathrm{HBr}$ in acetic acid ($1.9 \mathrm{~cm}^{3} \mathrm{mmol}^{-1}$). A fter 20 min at room temp., the solution was cooled to $-10^{\circ} \mathrm{C}$ and precooled ether $\left(10 \mathrm{~cm}^{3}\right)$ was added with vigorous stirring. Light petroleum ($5 \mathrm{~cm}^{3}$) was added to the resulting precipitate and the mixture was left to stand at $0^{\circ} \mathrm{C}$ for 15 min . The residue was washed with light petroleum ($2 \times 5 \mathrm{~cm}^{3}$) and the combined organic extracts were evaporated to dryness to give the corresponding amine hydrobromide.
M ethod F: hydrogenolysis of the benzyl ester. A stirred solution of the benzyl ester (1 equiv.) and acetic acid (1 to 3 drops) in ethanol $\left(2.5-5 \mathrm{~cm}^{3}\right)$ was hydrogenated for 18 h at room temp. in the presence of $10 \% \mathrm{Pd}-\mathrm{C}\left(188 \mathrm{mg} \mathrm{mmol}^{-1}\right)$. The mixture was filtered through C elite, evaporated, redissolved in aqueous 1 m NaHCO 3 and washed with a small amount of ethyl acetate $\left(2 \mathrm{~cm}^{3}\right)$. The aqueous phase was acidified with solid sodium bisulfite to pH 2.5 (universal indicator paper) and the free acid was extracted into ethyl acetate $\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The combined ethyl acetate fractions were dried and evaporated to give the free acid.

(2S,3'S)-B enzyl 2-[4-phenyl-3-(benzylox ycarbonylamino)butanoylamino]propanoate 15

N -Cbz-L- β-phenylalanine $\mathbf{6}^{10}$ ($\left.1.451 \mathrm{~g}, 4.6 \mathrm{mmol}\right)$ was reacted with L -alanine benzyl ester hydrochloride according to general coupling method A. Crystallisation of the crude product from ethyl acetate-light petroleum gave 15 as fine white crystals ($1.025 \mathrm{~g}, 47 \%$), mp $144-145^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 3427,3030,1713$, 1670 and 1499; [$\alpha]_{o}^{20}-19$ (c 0.04 in dichloromethane); $\delta_{\mathrm{H}} 1.37$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.4, \mathrm{Me}$), $2.33\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.2\right.$ and $5.4, \mathrm{CH}_{\mathrm{A}} \mathrm{CO}$), 2.45 (1 H , dd, J 14.8 and $5.2, \mathrm{CH}_{\mathrm{B}} \mathrm{CO}$), $2.80(1 \mathrm{H}$, dd, J 13.4 and $\left.8.1, \mathrm{CHCH}_{2}\right), 2.99\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.7\right.$ and $\left.6.4, \mathrm{CHCH}_{2}\right)$, $4.14\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right)$, $4.61(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}), 5.07(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CbzCH}_{2}\right), 5.16$ and $5.22\left(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 12.2, \mathrm{BnCH}_{2}\right), 5.75(1$ H, d, J 7.8, NH), 6.09 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.9, \mathrm{NHCBz}$) and 7.19-7.40 ($15 \mathrm{H}, \mathrm{m}$, arom); $\delta_{\mathrm{c}} 18.10,38.43,40.13,48.07,50.11,66.48$, 67.19, 126.57, 127.90, 127.97, 128.17, 128.44, 128.46, 128.56, 128.62, 129.29, 135.25, 137.88, 155.86, 170.41 and 172.60 [Found: $\left(\mathrm{M}-\mathrm{PhCH}_{2}\right)^{+}$, 383.1606. $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires m / z 383.1607].

($1^{\prime} \mathrm{S}, \mathbf{2}^{\prime \prime} \mathrm{S}$)-[1'-(Benzylox ycarbonyl)ethyl]5-[2"-(benzyloxy-carbonylamino)-3"-phenylpropylf-1H -tetrazole 16

The amide 15 ($978 \mathrm{mg}, 2.1 \mathrm{mmol}$) was reacted according to general method A for tetrazole formation. Purification on a 4 mm chromatatron plate, eluting with ethyl acetate-pentane ($3: 15$ to $2: 5$), gave two fractions. The first fraction contained 16 (484 mg, 47\%), mp 103-104 ${ }^{\circ} \mathrm{C}$ (Found: C, 67.5; H, 5.7; N, 14.0. $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires C, 67.3; H,5.85; N, 14.0\%); $[a]_{\mathrm{D}}^{2 \mathrm{O}}$ -51 (c 0.01 in dichloromethane); $v_{\text {max }} / \mathrm{cm}^{-1} 3431,1751,1713$ and 1510; $\delta_{\mathrm{H}} 1.88(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3, \mathrm{M} \mathrm{e}), 2.87(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.2$ and 7.5, $\mathrm{CHCH}_{\mathrm{A}}$), $2.98\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CN}_{4}\right.$ and $\mathrm{CHCH}_{\mathrm{B}}$), 4.25 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}$), $5.01(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.3, \mathrm{CHMe}), 5.04(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CbzCH}_{2}\right), 5.08$ and $5.14\left(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 12.0, \mathrm{BnCH}_{2}\right), 5.48$ (1 H, d, J 7.8, N H Cbz), 7.08 ($2 \mathrm{H}, \mathrm{m}$, arom) and 7.19-7.38 (13 H, m, arom); $\delta_{\mathrm{c}} 16.53,26.74,39.03,50.79,55.49,66.75$, 68.27, 126.97, 128.00, 128.18, 128.26, 128.53, 128.73, 128.77, 128.82, 129.06, 134.32, 137.10, 152.76, 157.59 and 167.59 (Found: $\mathrm{M}^{+}, 499.2223 . \mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires m / z 499.2219). The second fraction contained starting material 15 (335 mg , $34 \%)$.
($1^{\prime} \mathrm{S}, 2^{\prime \prime} \mathrm{S}$) $-1-\left[1^{\prime}(\right.$ B enzyloxycarbonyl)ethyl $] 5-\left[3^{\prime \prime}\right.$-phenyl- $\mathbf{2}^{\prime \prime}$ -
(quinolin-2-ylcarbonyl-L-asparaginylamino)propylf-1H -tetrazole 18
The tetrazole 16 ($362 \mathrm{mg}, 0.7 \mathrm{mmol}$) was reacted with $50 \% \mathrm{H} \mathrm{Br}$ in acetic acid, according to general method E, to give the amine hydrobromide 17 ($271 \mathrm{mg}, 84 \%$) which was not purified further; $\delta_{\mathrm{H}} 1.89(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.4, \mathrm{Me}), 2.99-3.31\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CN}_{4}\right), 4.09\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 5.14\left(2 \mathrm{H}, \mathrm{s}, \mathrm{BnCH}_{2}\right), 5.61(1$ $\mathrm{H}, \mathrm{q}, \mathrm{J} 7.3, \mathrm{CHMe}$) and 7.26-7.38 ($10 \mathrm{H}, \mathrm{m}$, arom) (Found: $\mathrm{MH}^{+}, 366.1931 . \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{2}$ requires $\mathrm{m} / \mathrm{z} 366.1929$).
The amine hydrobromide 17 ($218 \mathrm{mg}, 0.49 \mathrm{mmol}$) was reacted with N -(2-quinolinylcarbonyl)-L-asparagine ${ }^{17}$ (1.1 equiv.) in dichloromethane ($3 \mathrm{~cm}^{3}$) and DM F ($40 \mu \mathrm{l}$) according to general coupling method B. Purification by flash chromatography, eluting with ethyl acetate-light petroleum ($1: 1$ to $1: 0$) gave the amide 18 as an oil ($186 \mathrm{mg}, 60 \%$); $[a]_{0}^{20}+12$ (c 0.03 in M eOH); $\delta_{\mathrm{H}} 1.88(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3, \mathrm{Me}$), 2.71 and 2.83-3.08 (6 H , $\mathrm{m}, \mathrm{A} \mathrm{snCH} 2, \mathrm{CHCH}_{2}$ and $\left.\mathrm{CH}_{2} \mathrm{CN}_{4}\right)$, $4.52\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right)$, $4.96(1 \mathrm{H}, \mathrm{m}, \mathrm{A} \operatorname{snCH}), 5.14\left(2 \mathrm{H}, \mathrm{m}, \mathrm{BnCH}_{2}\right), 5.17(1 \mathrm{H}, \mathrm{q}, \mathrm{J}$ 7.3, CHMe), 5.83 ($1 \mathrm{H}, \mathrm{br}$ s, NH), 6.26 (1 H , br s, NH), $7.00-$ $7.11(5 \mathrm{H}, \mathrm{m}$, arom), 7.23-7.34 (5 H, m, arom), $7.59(1 \mathrm{H}, \mathrm{t}$, QCH), 7.73 ($1 \mathrm{H}, \mathrm{t}, \mathrm{QCH}$), $7.82(1 \mathrm{H}, \mathrm{d}, \mathrm{QCH}), 8.12(2 \mathrm{H}, \mathrm{m}$, QCH), 8.22 ($1 \mathrm{H}, \mathrm{d}, \mathrm{QCH}$) and $9.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{~A} \operatorname{snN} H)$; δ_{c} $16.39,26.98,37.49,39.87,49.20,50.28,55.70,68.32,118.54$, 126.76, 127.57, 128.32, 128.56, 128.68, 128.74, 129.19, 129.84, $130.28,134.50,136.88,137.54,146.34,148.21,153.27,165.00$, 168.00, 170.78 and 173.61 (Found: $\mathrm{M} \mathrm{H}^{+}, 635.2713 . \mathrm{C}_{34} \mathrm{H}_{35^{-}}$ $\mathrm{N}_{8} \mathrm{O}_{5}$ requires $\mathrm{m} / \mathrm{z} 635.2730$).

($1^{\prime} \mathrm{R}, 2^{\prime \prime} \mathrm{S}$)- and ($1^{\prime} \mathrm{S}, \mathbf{2}^{\prime \prime} \mathrm{S}$)-1-[1-(tert-B utylaminocarbonyl)ethyl]-5[$3^{\prime \prime}$-phenyl-2"-(quinolin-2-ylcarbonyl-L-asparaginylamino) propyl]1H -tetrazole 20 and 21

The benzyl ester 18 ($60 \mathrm{mg}, 0.1 \mathrm{mmol}$) was hydrogenated by general method F to give the acid 19 ($41 \mathrm{mg}, 79 \%$) which was not purified further; $\delta_{\mathrm{H}} 1.91$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3, \mathrm{CHM}$ e), 2.62-2.86 (2 $\mathrm{H}, \mathrm{m}, \mathrm{A} \mathrm{snCH} 2), 3.10\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CN}_{4}\right), 4.60(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CHCH}_{2} \mathrm{Ph}$), $4.92(1 \mathrm{H}, \mathrm{m}, \mathrm{AsnCH}), 5.18(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.3$, CHM e), 6.03 ($1 \mathrm{H}, \mathrm{br}, \mathrm{NH}$), $6.28(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 7.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 7.4, N H) , 7.08-7.23 ($5 \mathrm{H}, \mathrm{m}$, arom), 7.65 ($1 \mathrm{H}, \mathrm{t}, \mathrm{QCH}$), 7.80 (1 H, t, QCH) , $7.88(1 \mathrm{H}, \mathrm{d}, \mathrm{QCH}), 8.17(2 \mathrm{H}, \mathrm{m}, \mathrm{QCH}), 8.32(1 \mathrm{H}$, $\mathrm{d}, \mathrm{QCH})$ and $9.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{AsnNH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$, [${ }^{2} \mathrm{H}_{6}$]D M SO) 16.18, 26.62, 36.92, 38.96, 49.05, 49.65, 55.36, 118.28, 126.19, 127.31, 127.77, 128.07, 128.79, 128.87, 129.43, 129.83, 136.77, 137.06, 146.05, 148.55, 152.70, 164.06, 170.07, 170.22 and 172.81 (Found: $\mathrm{M} \mathrm{H}^{+}$, $545.2265 . \mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{8} \mathrm{O}_{5}$ requires $\mathrm{m} / \mathrm{z} 545.2260$).
The acid 19 ($29 \mathrm{mg}, 0.05 \mathrm{mmol}$) was reacted with tertbutylamine (1.5 equiv.) in dichloromethane according to general coupling method B. Purification by flash chromatography eluting with ethyl acetate-methanol (1:0 to 9:1) gave an epimeric mixture ($8 \mathrm{mg}, 25 \%$; $1: 1$ by ${ }^{1} \mathrm{H}$ NM R spectroscopy) of the amides 20 and 21. A sample of the epimeric mixture was separated by reversed-phase H PLC on a C_{18} analytical column eluting with methanol-water ($55: 45,0.1 \%$ TFA). The amide 21 eluted first peak retention time $\mathrm{t}_{\mathrm{R}} 18: 48 \mathrm{~min} ;[a]_{\mathrm{D}}^{20}+22$ (c 0.01 in MeOH); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, \mathrm{TFA}\right) 1.31\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CM} \mathrm{e}_{3}\right), 1.92(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 7.3, M e), 2.76-3.04 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CN}_{4}$ and $\left.\mathrm{A} \operatorname{snCH} 2\right), 3.15(2 \mathrm{H}$, d, J 6.4, CH ${ }_{2} \mathrm{Ph}$), $4.48\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{Ph}\right), 4.92(1 \mathrm{H}, \mathrm{m}$, A snCH), 5.09 ($1 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.3, \mathrm{CH}$ M e), $6.24\left(2 \mathrm{H}, \mathrm{br}, \mathrm{A} \operatorname{snNH} \mathrm{H}_{2}\right.$), 6.44 ($1 \mathrm{H}, \mathrm{br}, \mathrm{NH}$), 6.97-7.15 ($3 \mathrm{H}, \mathrm{m}$, arom), $7.13(2 \mathrm{H}, \mathrm{m}$, arom), $7.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.8, \mathrm{NH}), 7.68(1 \mathrm{H}, \mathrm{t}, \mathrm{QCH}), 7.82(1 \mathrm{H}, \mathrm{t}$, QCH), 7.92 ($1 \mathrm{H}, \mathrm{d}, \mathrm{QCH}$), $8.19(2 \mathrm{H}, \mathrm{m}, \mathrm{QCH}), 8.37(1 \mathrm{H}, \mathrm{d}$, QCH and $9.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{AsnNH}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}\right)$ 17.85, 27.56, 28.14, 39.25, 48.73, 49.88, 51.66, 57.54, 118.53, 126.58, 127.66, 128.25, 128.40, 128.98, 129.62, 130.30, 136.66 and 137.60 (Found: M Na a, $622.2875 . \mathrm{C}_{31} \mathrm{H}_{37} \mathrm{~N}_{9} \mathrm{O}_{4} \mathrm{~N}$ a requires $\mathrm{m} / \mathrm{z} 622.2866$). The amide 20 eluted second; peak retention time t_{R} 20: $40 \mathrm{~min} ;[\alpha]_{D}^{20}+14(\mathrm{c} 0.02 \mathrm{in} \mathrm{M} \mathrm{eOH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}\right.$, TFA), 1.34 ($9 \mathrm{H}, \mathrm{s}, \mathrm{CM} \mathrm{e}_{3}$), $1.74(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3, \mathrm{Me}$), 2.73 (2 H , $\mathrm{m}, \mathrm{A} \mathrm{snCH} 2), 2.91-3.13\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CN}_{4}\right.$ and $\mathrm{CH}_{2} \mathrm{Ph}$), $4.50(1$
$\left.\mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{Ph}\right), 4.90(1 \mathrm{H}, \mathrm{m}, \mathrm{AsnCH}), 5.02(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.8$, CHMe), 7.10-7.20 ($5 \mathrm{H}, \mathrm{m}$, arom), 7.33 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.8, \mathrm{NH}$), $7.66(1 \mathrm{H}, \mathrm{t}, \mathrm{QCH}), 7.81(1 \mathrm{H}, \mathrm{t}, \mathrm{QCH}), 7.91(1 \mathrm{H}, \mathrm{d}, \mathrm{QCH})$, $8.12(1 \mathrm{H}, \mathrm{d}, \mathrm{QCH}), 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{QCH})$ and $8.34(1 \mathrm{H}, \mathrm{d}$, QCH); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{TFA}\right) 17.56,27.59,28.09,37.41$ $38.84,49.29,49.82,51.75,57.22,118.45,126.74,127.60,128.21$ 128.53, 128.89, 129.51, 130.27, 136.65, 137.56, 146.37, 148.39, 165.69 and 166.86 (Found: $\mathrm{M} \mathrm{Na}^{+}, 622.2875 . \mathrm{C}_{31} \mathrm{H}_{37} \mathrm{~N}_{9} \mathrm{O}_{4}$ requires $\mathrm{m} / \mathrm{z} 622.2866$). U nreacted starting acid was extracted into the NaHCO_{3} wash during the workup. This phase was acidified with solid sodium bisulfite, extracted with ethyl acetate ($3 \times 5 \mathrm{~cm}^{3}$), dried and evaporated to give recovered 19 (18 mg , 62%).
($2 S, 2^{\prime} R, 3^{\prime} S$)- and ($2 S, 2^{\prime} S, 3^{\prime} S$)-B enzyl 2-[2'acetoxy-3'-(benzyl-oxycarbonylamino)-4'-phenylbutanoylamino]propanoate 22 and 25
A cetic anhydride (3 equiv.) was added to a solution of 11^{12} or 12^{12} in pyridine $\left(3 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at room temp. for 18 h . Saturated aqueous $\mathrm{NaCl}\left(3 \mathrm{~cm}^{3}\right)$ was added and the mixture was extracted with chloroform ($4 \times 10 \mathrm{~cm}^{3}$). The organic phase was dried and evaporated to give the corresponding acetate $\mathbf{1 3}$ (quant.) or $\mathbf{1 4}$ (quant.) which were used without further purification. A cetate 13; $\delta_{\mathrm{H}} 2.19(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.84(1 \mathrm{H}$, dd, J 13.2 and $8.3, \mathrm{CHCH}_{\mathrm{A}}$), $2.96(1 \mathrm{H}$, dd, J 13.4 and 7.0 , $\left.\mathrm{CHCH}_{\mathrm{B}}\right), 4.59(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH} 2), 5.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.8, \mathrm{CHOAc})$, 5.00 and $5.09\left(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 12.7, \mathrm{CbzCH}_{2}\right), 5.32(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.7$, NH) and 7.18-7.32 ($10 \mathrm{H}, \mathrm{m}$, arom). A cetate $\mathbf{1 4} ; \delta_{\mathrm{H}} 2.00(3 \mathrm{H}, \mathrm{s}$, Me), $2.72\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{\mathrm{A}}\right), 2.99\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{\mathrm{B}}\right), 4.43(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CHCH}_{2}$), 4.77 and $4.95\left(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 12.2, \mathrm{CbzCH}_{2}\right), 4.99$ (1 H, d, J 5.8, CHOAC), $5.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8, \mathrm{NH})$ and 7.06-7.26(10 H, m, arom); $\delta_{\mathrm{c}} 21.54,36.27,53.19,66.52,77.10,126.30$, 127.67, 127.79, 128.28, 129.19, 136.30, 137.64, 156.38, 172.01 and 174.48

The above acetate samples of $\mathbf{1 3}$ or $\mathbf{1 4}$ were each reacted with L-alanine benzyl ester hydrochloride (1.1 equiv.) in dichloromethane according to general coupling method B. Purification by flash chromatography eluting with ethyl acetate-light petroleum (3:2) gave the corresponding dipeptide analogues 22 or $\mathbf{2 5}$. Compound 22 ($501 \mathrm{mg}, 51 \%$), mp 142-144 ${ }^{\circ} \mathrm{C}$ (Found: C, 67.65; $\mathrm{H}, 6.0 . \mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}$ 7 requires $\mathrm{C}, 67.65 ; \mathrm{H}, 6.1 \%$); $[a]_{\mathrm{D}}^{20}-19$ (c 0.01 in dichloromethane); $\delta_{\mathrm{H}} 1.37$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9, \mathrm{Me}$), $2.05(3 \mathrm{H}, \mathrm{s}$, COM e), $2.84\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3, \mathrm{CHCH}_{2}\right), 4.43\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right)$, $4.59(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}), 4.98$ and $5.04(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 12.0$ $\left.\mathrm{CbzCH}_{2}\right), 5.14$ and $5.21\left(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 12.0, \mathrm{BnCH}_{2}\right), 5.21(1 \mathrm{H}$, d, J 3.9, CH OA c), 5.47 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.8$, N H Cbz), 6.68 ($1 \mathrm{H}, \mathrm{d}, 7.3$, NHCHMe) and 7.17-7.38 ($15 \mathrm{H}, \mathrm{m}$, arom); δ_{c} 17.96, 20.51, 37.75, 48.01, 53.24, 66.68, 67.28, 73.35, 126.65, 127.95, 128.36, $128.49,128.58,129.16,135.07,136.89,155.52,167.52$ and 168.98 [Found: $\left(\mathrm{M}-\mathrm{PhCH}_{2}\right)^{+}, 441.1661 . \mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires $\mathrm{m} / \mathrm{z} 441.1661]$. Compound 25 ($218 \mathrm{mg}, 44 \%$); [$a]_{0}^{20}-11$ (c 0.06 in dichloromethane); $v_{\text {max }} / \mathrm{cm}^{-1} 1713,1686,1506$ and $1217 ; \delta_{\mathrm{H}} 1.41$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0, \mathrm{Me}$), $2.10(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}$), $2.90(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.7$ and $\left.8.8, \mathrm{CHCH}_{\mathrm{A}}\right), 2.99\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.2\right.$ and $\left.6.3, \mathrm{CHCH}_{\mathrm{B}}\right), 4.39$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}$), $4.59\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}\right.$), $5.02\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CbzCH}_{2}\right)$, 5.14 and $5.20\left(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 12.5, \mathrm{CH}_{2}\right), 5.17(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOAC})$ 5.35 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.5, \mathrm{~N}$ H Cbz), $6.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.5, \mathrm{NH}$) and 7.227.34 ($15 \mathrm{H}, \mathrm{m}$, arom); $\delta_{\mathrm{c}} 17.78,20.74,36.78,48.11,53.74,66.67$, $67.25,74.11,126.63,127.74,127.97,128.13,129.38,128.46$ 128.57, 129.12, 135.07, 136.94, 155.99, 167.31, 169.79 and 172.17 [Found: $\left(\mathrm{M}-\mathrm{PhCH}_{2}\right)^{+}, 441.1660 . \mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires $\mathrm{m} / \mathrm{z} 441.1661]$.

($1^{\prime} S, 1^{\prime \prime} S, 2^{\prime \prime} S$)- and ($1^{\prime} S, 1^{\prime \prime} R, 2^{\prime \prime} \mathrm{S}$)-5-[1"-A cetoxy-2"-(benzylox y-carbonylamino)-3"-phenylpropyl] 1-[1'-benzyloxycarbonyl-ethylf-1H -tetrazole 23 and 24

The amide 25 ($184 \mathrm{mg}, 0.35 \mathrm{mmol}$) was reacted according to general method D for tetrazole formation. Purification by flash chromatography, eluting with ethyl acetate-light petroleum (2:3) gave two fractions. The first fraction contained an oily
mixture ($17: 3$ by ${ }^{1} \mathrm{H}$ N M R spectroscopy) of the tetrazoles 23 and 24 ($121 \mathrm{mg}, 63 \%$). Further chromatography gave an inseparable mixture of $\mathbf{2 3}$ and $\mathbf{2 4}$ and a pure sample of $\mathbf{2 3}$ (25 $\mathrm{mg}, 13 \%$); $[a]_{D}^{20}-34$ (c 0.01 in dichloromethane); $v_{\max } / \mathrm{cm}^{-1} 1755$, 1724 and 1512; $\delta_{\mathrm{H}} 1.84$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.4, \mathrm{Me}$ e, 1.84 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COM} \mathrm{e}$), $2.82\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.4\right.$ and $\left.7.6, \mathrm{CHCH}_{\mathrm{A}} \mathrm{Ph}\right), 2.93(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.9$ and 8.6, $\mathrm{CHCH}_{\mathrm{B}} \mathrm{Ph}$), $4.58\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 5.02$ and 5.08 (2 $\left.\mathrm{H}, \mathrm{ABq}, \mathrm{J} 11.7, \mathrm{CbzCH}_{2}\right), 5.07$ and $5.13(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 12.7$, BnCH_{2}), 5.17 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHM}$ e), 5.79 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.3, \mathrm{NH}$), 6.09 (1 H, d, J 5.4, CHOAc), $7.01(2 \mathrm{H}, \mathrm{m}$, arom) and 7.21-7.34 (13 H , m , arom); $\delta_{\mathrm{c}} 17.09,20.13,37.06,53.83,56.28,64.43,66.81$, 68.27, 127.10, 127.86, 128.13, 128.22, 128.50, 128.67, 128.72, $128.80,134.32,136.22,151.22,156.24,167.65$ and 169.60 (Found: $\mathrm{M}^{+}, 557.2280 . \mathrm{C}_{30} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{6}$ requires $\mathrm{m} / \mathrm{z} 557.2274$). The second fraction contained unreacted amide 25 ($26 \mathrm{mg}, 14 \%$).
In a second experiment, the amide 22 ($455 \mathrm{mg}, 0.9 \mathrm{mmol}$) was reacted according to general method D for tetrazole formation. Purification by flash chromatography as above gave two fractions. The first fraction contained a mixture ($4: 1$ by ${ }^{1} \mathrm{H}$ N M R spectroscopy) of the tetrazoles 24 and 23 ($302 \mathrm{mg}, 63 \%$), a sample of which (15 mg) was recrystallized from ethyl acetatelight petroleum to give fine white needles of $24(5 \mathrm{mg}), \mathrm{mp} 96-$ $98{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 64.7 ; \mathrm{H}, 5.8 . \mathrm{C}_{30} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{6}$ requires C, 64.6 ; H , 5.6%); $[a]_{0}^{20}-49$ (c 0.01 in dichloromethane); $\delta_{\mathrm{H}} 1.93$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 7.3, M e), 1.97 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COM} \mathrm{e}$), 2.91 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}$), 4.42 (1 $\left.\mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 5.02\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CbzCH}_{2}\right), 5.05$ and $5.12(2 \mathrm{H}$, $\mathrm{ABq}, \mathrm{J} 12.2, \mathrm{CH}_{2}$) $5.36(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}), 5.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.4$, CHOAc), 7.07 ($2 \mathrm{H}, \mathrm{m}$, arom) and 7.20-7.32 ($13 \mathrm{H}, \mathrm{m}$, arom); $\delta_{\mathrm{c}} 16.52,19.98,36.38,54.38,56.12,64.95,66.68,68.11,126.72$, 127.82, 127.97, 128.13, 129.32, 128.49, 128.53, 128.58, 128.89, 134.23, 136.01, 136.45, 152.00, 155.67, 167.60 and 169.79 (Found: M^{+}, 557.2273. $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{6}$ requires $\mathrm{m} / \mathrm{z} 557.2274$). The second fraction contained unreacted amide 22 ($147 \mathrm{mg}, 32 \%$).

($1^{\prime} \mathrm{S}, \mathbf{1}^{\prime \prime} \mathrm{S}, \mathbf{2}^{\prime \prime} \mathrm{S}$)- and ($\mathbf{1}^{\prime} \mathrm{S}, \mathbf{1}^{\prime \prime} \mathrm{R}, \mathbf{2}^{\prime \prime} \mathrm{S}$)-5-($1^{\prime \prime}$-A cetoxy- $\mathbf{2}^{\prime \prime}$-amino- $\mathbf{3 "}^{\prime \prime}$ -phenylpropyl)-1-(1'-benzyloxycarbonylethyl)-1H -tetrazole hydrobromide 26 and 27

The tetrazole 23 ($25 \mathrm{mg}, 0.1 \mathrm{mmol}$) was reacted with $50 \% \mathrm{H} \mathrm{Br}$ in acetic acid, according to general method E , to give the amine hydrobromide 26 ($17 \mathrm{mg}, 84 \%$); $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 1.89$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.4$, Me), $2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{COM} \mathrm{e}), 3.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 4.30(1 \mathrm{H}, \mathrm{m}$, CHCH_{2}), $5.16\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.65(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.3, \mathrm{CH}$ M e), 6.28 (1 $\mathrm{H}, \mathrm{d}, \mathrm{J} 4.4, \mathrm{CHOAc}$) and 7.17-7.38 ($10 \mathrm{H}, \mathrm{m}$, arom) (Found: MH^{+}, 424.1991. $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires $\mathrm{m} / \mathrm{z} 424.1984$). By an identical procedure, a mixture ($2: 3$ by ${ }^{1} \mathrm{H}$ NM R spectroscopy) of the tetrazoles $\mathbf{2 3}$ and $\mathbf{2 4}(45 \mathrm{mg}, 0.1 \mathrm{mmol})$ was reacted with $50 \% \mathrm{HBr}$ in acetic acid to give a mixture ($2: 3$ by ${ }^{1} \mathrm{H} N M R$ spectroscopy) of the amine hydrobromides 26 and 27 (33 mg , 89%); $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 27$ (from the mixture) 1.93 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3$, CHMe), $2.16(3 \mathrm{H}, \mathrm{s}, \mathrm{COM} \mathrm{e}), 2.95\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 4.08(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CHCH}_{2}\right), 5.07$ and $5.13\left(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 12.2, \mathrm{CH}_{2}\right), 5.71(1 \mathrm{H}$, q, J 7.3, CH M e), $5.89(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.4, \mathrm{CH} \mathrm{OAC}$) and 7.17-7.38 (10 H, m, arom).

($1^{\prime} R, 1^{\prime \prime} R, 2^{\prime \prime} S$)-, ($1^{\prime} S, 1^{\prime \prime} R, 2^{\prime \prime} S$)- (1'R,1"S,2"S,2"S)- and ($\mathbf{1}^{\prime} \mathrm{S}, 1^{\prime \prime} \mathrm{S}, 2^{\prime \prime} \mathrm{S}$)-1-[(tert-butylaminocarbonyl)ethyl]-5-[1"-hydroxy-3"-phenyl-2"-(quinolin-2-ylcarbonyl-L-asparaginylamino)propylf1H -tetrazole 34, 35, 38 and 39

A mixture ($31 \mathrm{mg}, 0.1 \mathrm{mmol}, 2: 3$ by ${ }^{1} \mathrm{H}$ NM R spectroscopy) of 26 and 27 was reacted with QC-l-A sn (1.3 equiv.) and BOP (1.3 equiv.) in dichloromethane ($5 \mathrm{~cm}^{3}$)-D M F ($0.05 \mathrm{~cm}^{3}$) for 2 d , according to general coupling method B. The crude product (36 mg) contained a mixture (approx $2: 3$) of $\mathbf{2 8}$ and $\mathbf{2 9}$, and was used without further purification; $\delta_{\mathrm{H}} 1.83$ and 1.93 (each $3 \mathrm{H}, \mathrm{s}$, COM e), 1.92 and 1.98 (each $3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3, \mathrm{Me}$), 2.68-3.18 (m, $\mathrm{CHCH}_{2} \mathrm{Ph}$ and AsnCH_{2}), 4.59 ($\mathrm{m}, \mathrm{CHCH}_{2} \mathrm{Ph}$), 4.86 (m , A snCH), 5.11 ($\mathrm{m}, \mathrm{BnCH}_{2}$), $5.80(\mathrm{~m}, \mathrm{CH} \operatorname{Me}$), 6.12 and 6.36 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3,5.4, \mathrm{CHOAc}$), 6.60 and 6.79 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 7.8, NH), 7.02-7.36 (m, arom), 7.57-8.27 (m, QCH) and 9.07 and 9.17 (each 1 H, d, J 8.3 and 7.8, A snNH).

The crude mixture of benzyl esters 28 and 29 (36 mg) was hydrogenated by general method F to give a mixture of the acids 30 and $31(15 \mathrm{mg})$ which was not purified further; $\delta_{\mathrm{H}} 1.84-$ 2.00 ($6 \mathrm{H}, \mathrm{m}, \mathrm{COM}$ e and CHMe), 2.66-3.22 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}$ and $\left.\mathrm{A} n \mathrm{CH}_{2}\right), 4.70-4.98\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{CH}_{2} \mathrm{Ph}\right.$ and A snCH $), 5.50$ and 5.67 (each $1 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.3, \mathrm{CHMe}$), 6.31 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.4$, CH OA c), 6.82-8.30 ($11 \mathrm{H}, \mathrm{m}$, arom) and 9.12 and 9.23 (each 1 H, d, J 8.3, A snN H).

The mixture of acids 30 and 31 ($15 \mathrm{mg}, 0.03 \mathrm{mmol}$) was reacted with tert-butylamne (5 equiv.), BOP (1.9 equiv.) and triethylamine (1.5 equiv.) in DM F ($0.5 \mathrm{~cm}^{3}$) according to general coupling method B. Purification by flash chromatography eluting with ethyl acetate-methanol ($1: 0$ to $9: 1$) gave the four epimers 32, 33, 36 and 37 ($4 \mathrm{mg}, 24 \% ; 1.5: 1.5: 1.2: 1$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy) (Found: MH^{+}, 658.3104. $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{~N}_{9} \mathrm{O}_{6}$ requires $\mathrm{m} / \mathrm{z} 658.3101$). Reversed phase HPLC on a C_{18} analytical column [methanol-water ($55: 45,0.1 \%$ TFA)] showed four peaks with retention times of $20: 46,24: 31,28: 46$ and $30: 46 \mathrm{~min}$. A mixture of the unreacted acids 30 and $31(10 \mathrm{mg}$, 67%) was recovered from the NaHCO_{3} washing.

The preceeding mixture of the four acetates $(4.0 \mathrm{mg}, 0.01$ mmol) and potassium carbonate ($1.7 \mathrm{mg}, 0.01 \mathrm{mmol}$) were dissolved in methanol-water ($0.5 \mathrm{~cm}^{3}$ of a 9:1 mixture) and the solution was stirred at room temp. for 18 h . Evaporation under reduced pressure gave a residue which was dissolved in ethyl acetate, washed with water, dried and evaporated to give a mixture of 34, 35, 38 and 39 ($3.5 \mathrm{mg}, 95 \%, 2.8: 2.8: 1.3: 1$). Thefour epimers were separated by reversed-phase H PLC on a C_{18} analytical column, eluting with methanol-water ($1: 1,0.1 \%$ TFA) ; peak retention times (t_{R}) 39 14:19 (0.39 mg), 38 16:53 (0.51 mg), $3520: 11(1.11 \mathrm{mg})$ and $3426: 14 \mathrm{~min}(1.11 \mathrm{mg}) . \delta_{\mathrm{H}}(34)$ $1.32\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3}\right), 1.79(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9, \mathrm{Me}), 2.75(2 \mathrm{H}, \mathrm{m}$, A snCH $)_{2}$, 2.93 and 3.19 (each $1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}_{2} \mathrm{Ph}$), $4.58(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CHCH}_{2}\right), 4.84(1 \mathrm{H}, \mathrm{m}, \mathrm{A} \mathrm{snCH}), 5.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.4, \mathrm{CHOH})$, 5.49 ($1 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.8, \mathrm{CH}$ M e), 7.01-7.17 ($5 \mathrm{H}, \mathrm{m}$, arom), 7.67 (1 H , t, QCH), $7.82(1 \mathrm{H}, \mathrm{t}, \mathrm{QCH}), 7.93(1 \mathrm{H}, \mathrm{d}, \mathrm{QCH}), 8.14(2 \mathrm{H}, \mathrm{m}$, QCH) and 8.36 ($1 \mathrm{H}, \mathrm{d}, \mathrm{QCH}$) (Found: $\mathrm{MH}^{+}, 616.2995$. $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{9} \mathrm{O}_{5}$ requires $\mathrm{m} / \mathrm{z} 616.2995$); $\delta_{\mathrm{H}}(35) 1.31\left(9 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}_{3}\right)$, $1.95(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3, \mathrm{Me}), 2.68(2 \mathrm{H}, \mathrm{m}, \mathrm{A} \mathrm{snCH} 2), 2.83$ and 3.15 (each $\left.1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.62\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 4.81(1 \mathrm{H}, \mathrm{m}$, AsnCH), $5.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.9, \mathrm{CHOH}), 5.55(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.3$, CH M e), 6.87-7.15 ($5 \mathrm{H}, \mathrm{m}$, arom), 7.68 ($1 \mathrm{H}, \mathrm{t}, \mathrm{QCH}$), 7.82 (1 $\mathrm{H}, \mathrm{t}, \mathrm{QCH}), 7.94(1 \mathrm{H}, \mathrm{d}, \mathrm{QCH}), 8.15(2 \mathrm{H}, \mathrm{m}, \mathrm{QCH})$ and 8.38 ($1 \mathrm{H}, \mathrm{d}, \mathrm{QCH}$) (Found: $\mathrm{M} \mathrm{H}^{+}, 616.2995 . \mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{9} \mathrm{O}_{5}$ requires $\mathrm{m} / \mathrm{z} 616.2995$); $\delta_{\mathrm{H}}(38) 1.29\left(9 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}_{3}\right.$), 1.80 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8$, Me), 2.52 and 2.66 (each $1 \mathrm{H}, \mathrm{dd}, \mathrm{A} \mathrm{snCH}_{2}$), 2.97 and 3.12 (each $\left.1 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.61\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 4.83(1 \mathrm{H}, \mathrm{m}, \mathrm{AsnCH})$, 5.04 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.9, \mathrm{CHOH}$), 5.42 ($1 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.3, \mathrm{CH}$ M e), $7.09-$ $7.13(5 \mathrm{H}, \mathrm{m}$, arom), $7.68(1 \mathrm{H}, \mathrm{t}, \mathrm{QCH}), 7.81(1 \mathrm{H}, \mathrm{t}, \mathrm{QCH})$, $7.93(1 \mathrm{H}, \mathrm{d}, \mathrm{QCH}), 8.17(2 \mathrm{H}, \mathrm{m}, \mathrm{QCH})$ and $8.38(1 \mathrm{H}, \mathrm{d}$, QCH); $\delta_{\mathrm{H}}(39) 1.30$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e} \mathrm{e}_{3}$), 1.93 ($3 \mathrm{H}, \mathrm{d}$, J $7.3, \mathrm{M} \mathrm{e}$), 2.44 and 2.70 (each $1 \mathrm{H}, \mathrm{dd}, \mathrm{A} \mathrm{snCH}_{2}$), 2.89 and 3.09 (each 1 H , dd, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.65(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH} 2), 4.77(1 \mathrm{H}, \mathrm{m}, \mathrm{A} \mathrm{snCH}), 5.12(1$ H, d, J 5.3, CHOH), 5.52 ($1 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.8, \mathrm{CH}$ M e), 7.09-7.15 (5 H, m, arom), $7.67(1 \mathrm{H}, \mathrm{t}, \mathrm{QCH}), 7.81(1 \mathrm{H}, \mathrm{t}, \mathrm{QCH}), 7.93(1 \mathrm{H}$, $\mathrm{d}, \mathrm{QCH}), 8.17(2 \mathrm{H}, \mathrm{m}, \mathrm{QCH})$ and $8.37(1 \mathrm{H}, \mathrm{d}, \mathrm{QCH})$.

($2 S, 2^{\prime} R, 3^{\prime} S$)- and ($2 S, 2^{\prime} S, 3^{\prime}$ 'S)-Benzyl 2-[3'-(benzyloxy-carbonylamino)- $\mathbf{2}^{\prime}$-hydroxy- $\mathbf{4}^{\prime}$-phenylbutanoylaminopropanoate 40

A mixture of the acids 11 and $\mathbf{1 2}^{12}\left(45 \mathrm{mg}, 0.1 \mathrm{mmol} ; 4: 1\right.$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy) was reacted with L-alanine benzyl ester hydrochloride according to general coupling method A. Purification by flash chromatography eluting with ethyl acetatedichloromethane ($1: 9$ to $1: 3$) gave a mixture of the epimers 40 ($42 \mathrm{mg}, 61 \% ; 4: 1$ by ${ }^{1} \mathrm{H}$ N M R spectroscopy); δ_{H} (40a) (from the mixture) 1.35 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3, \mathrm{M} \mathrm{e}$), $2.99\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{Ph}\right), 4.13$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right.$ and CHOH$), 4.57(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}), 4.99(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CbzCH}_{2}\right), 5.06$ and $5.15\left(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 12.2, \mathrm{BnCH}_{2}\right), 5.20(1$ H, d, J 5.4, OH) , $5.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8, \mathrm{CbzN} \mathrm{H}$) and 7.17-7.36 (15
$\mathrm{H}, \mathrm{m}, \mathrm{arom})$; $\delta_{\mathrm{H}}(\mathbf{4 0 b})$ (partial data from the mixture) $1.29(3 \mathrm{H}$, d, J 7.4, M e); δ_{c} (mixture) 17.69, 17.88, 36.42, 47.74, 47.80, 55.37, 55.55, 66.69, 66.74, 66.94, 67.02, 72.61, 72.43, 126.39, 127.67, 127.78, 127.94, 128.28, 128.32, 128.46, 129.18, 135.18, 136.16, 137.71, 137.65, 156.78, 157.05, 172.16 and 172.39 [Found: $\left(\mathrm{M}-\mathrm{PhCH}_{2}\right)^{+}, 399.1556 . \mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires m / z 399.1556]. Reaction of this mixture under tetrazole formation general method C gave an intractable mixture.

($1^{\prime} S, 1^{\prime \prime} S, 2^{\prime \prime} S$)- and ($1^{\prime} S, 1^{\prime \prime} R, 2 S^{\prime \prime}$)-5-[2"-(Benzyloxycarbonyl-amino)-1"-hydrox y-3"-phenylpropyl]-1-(1^{\prime}-methoxycarbonyl-ethyl)-1H -tetrazole 43 and 44

A mixture ($121 \mathrm{mg}, 0.2 \mathrm{mmol} ; 17: 3$ by $^{1} \mathrm{H}$ N M R spectroscopy) of the tetrazoles $\mathbf{2 3}$ and $\mathbf{2 4}$ was dissolved in methanol-water (5 cm^{3} of a 8:2 mixture) containing potassium hydroxide (2.2 $\mathrm{mg}, 0.04 \mathrm{mmol}$), and the mixture was stirred at room temp. for 18 h . The mixture was acidified with aqueous 2 m HCl and evaporated. Purification on a 1 mm chromatatron plate, eluting with a gradient of light petroleum-ethyl acetate-methanol (3:2:0 to 0:7:3), gave two fractions. The first fraction contained a mixture ($7: 3$ by ${ }^{1} \mathrm{H}$ N M R spectroscopy) of the methyl esters 43 and 44 ($19 \mathrm{mg}, 20 \%$). The second fraction contained an inseparable mixture ($1: 1$ by ${ }^{1} \mathrm{H}$ N M R spectroscopy) of the free acids 41 and 42 ($55 \mathrm{mg}, 59 \%$) which were not characterised.
The mixture of 43 and 44 was subjected to reversed-phase HPLC on C_{18} analytical column, eluting with methanol-water ($40: 60,0.1 \%$ TFA). The methyl ester 43 eluted first; peak retention time $\mathrm{t}_{\mathrm{R}} 39: 46 \mathrm{~min} ; \delta_{\mathrm{H}} 1.88(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.4, \mathrm{M} \mathrm{e}), 3.15(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CHCH}_{2}\right), 3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}), 4.29\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 4.97$ and 5.04 ($2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 12.4, \mathrm{CbzCH}_{2}$), $5.10(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.9, \mathrm{CHOH}$), 5.45 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.8, \mathrm{NH}$), $5.69(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.3, \mathrm{CH}$ M e) and 7.177.31 (10 H , m, arom); $\delta_{\mathrm{c}} 17.05,35.98,53.16,56.88,67.13,68.04$, 126.80, 127.77, 128.17, 128.47, 128.64, 129.16, 135.83, 137.30, 154.72, 157.31 and 169.19 (Found: $\mathrm{M}^{+}, 439.1858 . \mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{5}$ requires $\mathrm{m} / \mathrm{z} 439.1855$). The methyl ester 44 eluted second; peak retention time $\mathrm{t}_{\mathrm{R}} 41: 31 \mathrm{~min} ; \delta_{\mathrm{H}} 1.92(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.4, \mathrm{Me}$), 3.09$3.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 3.70(3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}), 4.25(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CHCH}_{2}\right), 4.97$ and $5.04\left(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 12.2, \mathrm{CbzCH}_{2}\right), 5.09(1 \mathrm{H}$, d, J 4.4, CHOH), $5.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{NH}$), $5.63(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.3$, CH Me) and 7.13-7.30 ($10 \mathrm{H}, \mathrm{m}$, arom); $\delta_{\mathrm{c}} 16.37,36.52,53.35$, $56.62,67.02,67.10,126.73,127.71,128.44,128.58,129.04$, 129.14, 135.83, 136.94, 154.08, 157.28 and 169.20 [Found: $\left(\mathrm{M}-\mathrm{CH}_{4} \mathrm{O}\right)^{+}$, 407.1594. $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires m / z 407.1593].
($1^{\prime} \mathrm{S}, 2 \mathrm{SS}^{\prime \prime}$)-5-[2"-(B enzyloxycarbonylamino)-3"-phenylpropanoyl] 1-(1'-methoxycarbonylethyl)-1H -tetrazole 45
A mixture of 43 and $44\left(2.7 \mathrm{mg}, 0.01 \mathrm{mmol} ; 1: 1\right.$ by ${ }^{1} \mathrm{H}$ N M R spectroscopy) and Dess-M artin periodinane ${ }^{13}$ ($14 \mathrm{mg}, 0.04$ mmol) was dissolved in dichloromethane ($3 \mathrm{~cm}^{3}$) and the solution was stirred at room temp. for 18 h . To the cloudy solution was added $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(0.05 \mathrm{mmol})$ in saturated aqueous NaHCO_{3} $\left(2 \mathrm{~cm}^{3}\right)$, and the mixture was stirred at room temp. for 10 min . The mixture was washed with saturated aqueous NaHCO_{2} (2 cm^{3}) and water ($2 \mathrm{~cm}^{3}$), dried and evaporated to give 45 (quant.) as a colourless oil; $\delta_{\mathrm{H}} 1.98$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3, \mathrm{Me}$), $3.21(1 \mathrm{H}, \mathrm{dd}$, J 13.9 and $\left.7.6, \mathrm{CHCH}_{\mathrm{A}}\right), 3.45\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.2\right.$ and $\left.4.0, \mathrm{CHCH}_{\mathrm{B}}\right)$, 3.75 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), $5.04\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CbzCH}_{2}\right.$), $5.33(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8$, NH), $5.59\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 5.79(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.3, \mathrm{CH} \mathrm{Me}$), 7.10 ($2 \mathrm{H}, \mathrm{m}$, arom) and 7.24-7.37 (8 H, m, arom); δ_{c} (incomplete) 16.19, 37.39, 53.39, 58.31, 59.83, 67.26, 127.43, 128.03, 128.29, 128.54, 128.80, 129.36 and 164.79 (Found: M^{+}, 437.1701. $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{5}$ requires $\mathrm{m} / \mathrm{z} 437.1699$).

A cknowledgements

This work was partially supported by a research grant from the Foundation for Research Science and Technology (New Zealand). The authors are also gratefully indebted to Dr David Fairlie and Dr Doug Bergman of the Centre for Drug D esign and D evelopment, TheU niversity of Queensland,

Brisbane, Australia for assistance with the in vitro HIV-1 protease testing.

References

1 J. G ante, A ngew. C hem., Int. Ed. E ngl., 1994, 33, 1699.
2 M . L. West and D. P. Fairlie, Trends P harmacol. Sci., 1995, 16, 67; J. R. H uff, J. M ed. Chem., 1991, 34, 2305.

3 A. L. Swain, M. M. M iller, J. Green, D. H. Rich, J. Schneider, S. B. H. K ent and A. W lodawer, Proc. N atl. A cad. Sci. USA, 1990, 87, 8805; D. H. Rich, J. Green, M. V. Toth, G. R. M arshall and S. B. H. K ent, J. M ed. Chem., 1990, 33, 1288.

4 J. G. Dann, D. K. Stammers, C. J. Harris, R. J. A rrowsmith, D. E. Davies, G. W. H ardy and J. A. M orton, Biochem. Biopys. R es. Commun., 1986, 134, 71.
5 D. P. Fairlie, G. A bbenante and D. R. M arch, Curr. M ed. Chem., 1995, 2, 654. C. Tonioli, Int. J. Peptide P rotein Res., 1990, 35, 287.
6 D. R. M arch, G. A bbenante, D. A. Bergman, R. I. Brinkworth, W. Wickramasinghe, J. Begun, J. L. M artin and D. P. Fairlie, J. A m. Chem. Soc., 1996, 118, 3375.
7 J. Zabrocki, J. B. Dunbar Jr., K. W. M arshall, M. V. Toth and G. R. M arshall, J. Org. Chem., 1992, 57, 202; G. D. Smith, J. Zabrocki, T. A . Flak and G. R . M arshall, Int. J. Pept. P rotein Res., 1991, 37, 191.
8 A. D. A bell, D. A. Hoult and E. J. Jamieson, Tetrahedron Lett., 1992, 5831.
9 A. D. A bell, M. D. Oldham and J. M. Taylor, J. Chem. Soc., Perkin Trans. 1, 1995, 953; A. D. A bell, M . D. Oldham and J. M . Taylor, J. Org. Chem., 1995, 60, 1214; A. D. A bell and J. C. Litten, Tetrahedron Lett., 1992, 3005.

10 K. Plucinska and B. Liberek, Tetrahedron, 1987, 43, 3509.
11 J.-A . Fehrentz and B. Castro, Synthesis, 1983, 676.
12 S. L. Harbeson, S. M. A belleira, A. A kiyama, R. Barrett, III, R. Carroll, J. A. Straub, J. N. Tkacz, C. Wu and G. F. M usso, J. M ed. Chem., 1994, 37, 2918; R. Herranz, J. Castro-Pichel, S. Vinuesa and M. T. Garcia-L opez, J. Org. Chem., 1990, 55, 2232; R. Nishizawa, T. Saino, T. Takita, H. Suda, T. A oyagi and H. U mezawa, J. M ed. C hem., 1977, 20, 510.

13 D. B. Dess and J. C. M artin, J. Org. Chem., 1983, 48, 4155.
14 D. A. Bergman, D. Alewood, P. F. Alewood, J. L. A ndrews, R. I. Brinkworth, D. R. Engelbretsen and S. B. H. K ent, Lett. Pept. Sci., 1995, 2, 99.
15 D. H. Rich, C.-Q. Sun, J. V. N. V. Prasad, A . Pathiasseril, M . V. Toth, G. R . M arshall, M . Clare, R . A . M ueller and K . H ouseman, J . M ed. Chem., 1991, 34, 1225; A. K rohn, S. Redshaw, J. C. R itchie, B. J. Graves and M . H. H atada, J. M ed. Chem., 1991, 34, 3340; N. A. Roberts, J. A. M artin, D. K inchington, A. V. Broadhurst, J. C. Craig, I. B. Duncan, S.A. Galpin, B. K. H anda, J. K ay, A. K rohn, R . W. Lambert, J. M . M erritt, J. S. M ills, J. E. B. Parkes, S. Redshaw, A. J. Ritchie, D. L. Taylor, G. J. Thomas and P. J. M achin, Science, 1990, 248, 358.

16 I. Schechter and A. Berger, Biochem. Biophys. Res. Commun., 1967, 27, 157.
17 V. M. G irijavallabhan, F. Bennett, N. M. Patel, A. K. Ganguly, B. D asmahapatra, N. Butkiewicz and A . H art, Bioorg. M ed. Chem., 1994, 2, 1075.

Paper 7/02458D
Received 10th A pril 1997
A ccepted 9th M ay 1997

